Metrics Blog

The Blog for Business Performance Improvement

Improve Quality Control for Faster Cycle Times

How can manufacturers improve QC cycle times while still performing everything they need to stay compliant?

At a glance, the mission of a quality control specialist working in fields like chemical, medical device manufacturing, or life sciences seems different to that of a production manager at the same company. After all, isn’t quality control all about ensuring the safety of the products no matter how long it takes, whereas production itself is far more concerned with meeting quotas and demand on a tight schedule?

Yes and no – while quality control standardizes the manufacturing process to avoid variances harmful to customers and the reputation of the organization at large, QC microbiologists and technicians no doubt have work orders of their own to fill and capacities to reach when it comes to testing. And although production managers or other manufacturing specialists may have output on the mind, they understand without a high standard for quality in operations, their businesses wouldn’t likely have any customer demand in the first place.

Optimizing QC laboratory processes in the manufacturing sector involves a level balancing of both safety and speed without compromising one another. How can manufacturers improve QC cycle times while still performing everything they need to stay compliant?

cycle times

All QC specialists should follow the same guidelines for greater risk prevention and cycle time preservation.

Drill down the basics
Good risk management in a QC lab should outline all methods for quarantining and reversing conditions adversely affecting manufactured goods. That way, microbiologists and lab technicians save resources, perform speedy investigations, and set QC processes back on track after an out-of-specification (OOS) event. However, there’s something to be said about avoiding trouble in the first place when cycle times are at stake.

To that end, the QC lab should take a page from lean manufacturing, particularly on the subject of process standardization and uniformity. The sequence in which technicians prepare for work, process samples, dispose spent resources, or clean lab equipment matters greatly to both the success of the testing and the prevention of widespread contamination. An audit of testing operations performed by laboratory supervisors may reveal areas where technicians’ actions or inactions potentially subvert the constancy of QC processing and production.

If possible, supervisors should look to documentation on past OOS events for hints on where to start looking first to minimize time and resources spent investigating. That said, any small discovery that preempts a contamination event, whether found in either historical data or through careful observation, saves production considerably in cycle time.

Bring in automation
Research published by The Royal Society of Chemistry analyzing the most common errors in chemical laboratories uncovered the greatest threat to QC cycle time stability: humans. The study found problems like sample preparation, uncalibrated equipment, miscalculation, and general human error made up the majority of OOS incidents. While insightful, these findings should come as no surprise to manufacturers, especially those who witnessed the age of manual production give way to automation.

“Manual processes anywhere open businesses up to risk.”

Truth be told, manual processes anywhere in the production cycle open businesses up to risk, perhaps even unnecessarily. The burgeoning field of rapid microbiological and rapid microbial methods devotes itself entirely to finding a solution to this very issue. Manufacturers should likewise devote their time to investigating and investing in innovations that target low-value, high-risk laboratory activities like data keying or slide movement between processing stations and incubators. Focusing on these areas mitigates the risk of production downtime due to contamination, frees up microbiologists for more value-added opportunities and reduces the overall time spent performing these tasks, all supporting better cycle times for the rest of the plant.

Go digital for smarter oversight
There’s a reason why many QC labs have gone digital with laboratory information management systems (LIMS). LIMSes aggregate and galvanize all QC processing data stored therein, so laboratory workers can utilize information in ways that complement faster, more consistent cycle times. Dashboards and other visualizations immediately come to mind. When technicians can easily interpret their workloads and capacity demands at a moment’s notice, they spend more time applying their talent to testing.

Manufacturers should remember to align their investment strategies with cycle time improvement initiatives established above. For instance, if a QC lab still finds value in manually keying data directly into an LIMS, perhaps it should purchase software with manipulable value fields. A single misplaced decimal point could send a laboratory on a costly wild goose chase attempting to find the phantom catalyst that caused an OOS reading. Some LIMS software has the power to prevent technicians from entering numbers or symbols based on prearranged value ranges, so an error in the QC lab doesn’t carry over onto the production floor in the form of downtime.